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1. Introduction 
This document provides a brief description of NASA’s Orbiting Carbon Observatory 2 (OCO-2; 

Crisp et al., 2004; Eldering et al., 2017a) Goddard Earth Observing System (GEOS) Level 3 

(L3) gridded, gap-filled, column-averaged, dry-air mole fraction of carbon dioxide (XCO2) 

fields. These fields are produced by assimilating OCO-2 retrievals into GEOS with the 

Constituent Data Assimilation System (CoDAS). Data are provided globally at 0.5 x 0.625 

resolution at both daily and monthly frequencies from 1 January 2015 to present, typically with a 

two to three-month latency. 

2. Description of the 
OCO-2 GEOS L3 Product  
OCO-2 provides spatially resolved estimates of 

XCO2 based on the column integrated number 

densities of carbon dioxide and molecular 

oxygen, which are retrieved from near infrared 

spectra in sunlit, clear-sky conditions. More 

details on the OCO-2 mission can be found in 

Eldering et al. (2017b) with additional 

information on the retrieval process available 

in O’Dell et al. (2018). The OCO-2 team 

produces several widely used data products 

classified as Level 1B (L1B; calibrated spectral 

radiances) and Level 2 (L2; orbital track 

retrievals), which are fully described in the 

OCO Version 10 (v10) User’s Guides available 

at the data archive pages 

(https://doi.org/10.5067/6O3GEUK7U2JG and 

https://doi.org/10.5067/E4E140XDMPO2). 

 

Though the OCO-2 mission provides the 

highest quality space-based XCO2 retrievals to 

date, the L2 data are characterized by large 

gaps in coverage due to OCO-2’s narrow 10-

km ground track and an inability to see through 

clouds and thick aerosols. Several different 

methods have been explored to produce 

spatially complete L3 (gridded) XCO2 fields 

including averaging, kriging, and data 

assimilation. Here, we describe fields produced 

using a data assimilation technique commonly referred to as state estimation within the 

geophysical literature. Data assimilation synthesizes simulations and observations, adjusting the 

state of atmospheric constituents like CO2 to reflect observed values, thus gap-filling 

observations when and where they are unavailable based on previous observations and short 

 

Figure 1. Snapshots of OCO-2 L2 

soundings and assimilated OCO-2 GEOS 

L3 fields: (A) 16 days of OCO-2 L2 XCO2 

soundings on 1–16 April 2020 and (B) the 

16-day average of assimilated OCO-2 GEOS 

L3 XCO2 fields over the same period. Data 

assimilation combines satellite observations 

(A) with a weather-resolving atmospheric 

model to form gridded, time-varying, three-

dimensional fields, from which averages (B) 

and uncertainties (below) follow. Units are 

parts per million (ppm). 
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transport simulations by GEOS. Compared to other methods, data assimilation has the advantage 

that it makes estimates based on our collective scientific understanding, notably of the Earth’s 

carbon cycle and atmospheric transport (Figure 1; more details in Weir et al., 2021b). 

 

OCO-2 GEOS L3 data are produced by 

ingesting OCO-2 L2 retrievals every 6 hours 

with GEOS CoDAS, a modeling and data 

assimilation system maintained by NASA’s 

Global Modeling and Assimilation Office 

(GMAO). GEOS CoDAS uses a high-

performance computing implementation of the 

Gridpoint Statistical Interpolation (GSI; Wu et 

al., 2002) approach for solving the state 

estimation problem. GSI finds the analyzed 

state that minimizes the three-dimensional 

variational (3D-Var) cost function formulation 

of the state estimation problem. In particular, it 

ingests column retrievals of trace gas 

abundances taking into account both their 

vertical sensitivity, i.e., averaging kernel, and a 

priori assumptions. When and where data are 

unavailable, e.g., in cloudy scenes, gaps are 

filled using 6-hour GEOS simulations and all 

previous observations in a statistically optimal 

way (Jazwinski, 1970). The atmospheric 

circulation in GEOS is constrained by the 

millions of remote sensing and in situ 

observations every hour included in the 

Modern Era Retrospective analysis for Research and Application, version 2 (MERRA-2; Gelaro 

et al., 2017). This accurate representation of transport patterns is critical for interpreting 

measured variations that reflect a combination of nearby and distant surface fluxes due to the 

long lifetime of CO2. 

 

The assimilated OCO-2 GEOS L3 product uses the same bias correction as the OCO-2 L2 

product, applies additional quality control (QC) flags, and inflates the reported error to reflect 

cross-track variability of XCO2. The additional QC flags screen for 1) soundings over snow and 

ice, 2) glint angles greater than 80, 3) tracks with less than 4 footprints, 4) soundings with 

reported uncertainties less than 10-3 parts per million (ppm). Given a cross-track standard 

deviation of σ𝑡 and a reported retrieval uncertainty of σ𝑟 , we use an inflated uncertainty of 

σ′ = √σ𝑟2 + σ𝑡
2 

for all soundings in the track.  

 

Prior to any assimilation of XCO2 data, GEOS CoDAS products are informated by a high-

quality, observationally-derived estimate of surface-atmosphere CO2 flux called the Low-order 

Flux Inversion (LoFI; Weir et al., 2021a). Fossil fuel emissions are prescribed based on the 

 

Figure 2. Transects of instantaneous 

OCO-2 GEOS CO2 at the surface 

(bottom), 10 km above sea level (top, 

transparent), and along the International 

Dateline (right) on 9 April 2020, 00:00 

UTC. By reproducing the global, high-

resolution, vertical and temporal variability 

of CO2, the assimilation system can 

synthesize heterogenous data types across 

drastically different scales, e.g., satellite 

retrievals and in situ measurements from 

surface stations and aircraft. 
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Open-source Data Inventory for Anthropogenic CO2 (ODIAC), which combines national total 

emissions estimates with satellite observations of nighttime lights to produce 0.1 global 

emissions maps (Oda and Maksyutov, 2011). Emissions from fires come from the Quick Fire 

Emissions Dataset (QFED; Darmenov and da Silva, 2015), which estimates emissions in near 

real time using Moderate Resolution Imaging Spectrometer (MODIS) fire radiative power data. 

Land-atmosphere exchange is derived from the Carnegie-Ames-Stanford-Approach–Global Fire 

Emissions Database version 3 (CASA-GFED3; Randerson et al., 1997) model that uses 

Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and 

Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) 3g (Pinzon and 

Tucker, 2014) and MERRA-2 meteorological data to estimate monthly net primary production 

and heterotrophic respiration carbon fluxes (https://doi.org/10.5067/VQPRALE26L20). Ocean 

fluxes use a simple technique to restore inter-annual variability to the Takahashi et al. (2014) 

climatology. Finally, an additional empirically derived sink is applied to ensure realistic 

atmospheric growth rates. A unique feature of the flux collection used by GEOS CoDAS is the 

ability to run retrospectively, using year-specific satellite-derived estimates, or in near real time 

using a projected atmospheric growth rate and data from previous years. Simulations using LoFI 

tend to perform comparably to modern flux inversions (Weir et al., 2021a; Peiro et al., 2022) and 

serve as the baseline in the assessment of assimilation skill in Section 3. 

 

For production of OCO-2 GEOS L3 data, 

GEOS CoDAS runs on a horizontal grid with a 

nominal horizontal resolution of 50 km and 72 

terrain-following vertical levels from the 

surface up to 0.01 hPa (see Figure 2). Its 

relatively fine spatial resolution enables it to 

reproduce surface and aircraft observations 

with high fidelity (see Section 3 and Weir et 

al., 2021a, 2021b; Bell et al., 2020, Campbell 

et al., 2020; Zhang et al., 2022, Peiro et al., 

2022). Three-dimensional CO2 fields are 

vertically integrated to produce two-

dimensional XCO2 fields which are provided at 

both daily and monthly temporal resolution. 

Data are provided at the same horizontal 

resolution and in the same format as MERRA-

2 products to facilitate interoperability. 

Uncertainty quantification 

Daily and monthly random errors, i.e., 

precisions, are calculated using the a posteriori 

Desroziers et al. (2005) diagnostics. Those 

diagnostics converge in the mean to 

observation-space projections of the 

background, analysis, and observation error 

covariances. These diagnostics are only representative of column, i.e., XCO2 errors because they 

are expressed in observation space, not state space. Furthermore, they assume Gaussianity, which 

 

Figure 3. Snapshots of OCO-2 GEOS L3 

analysis precisions: (A) 1 January 2015 (B) 

1 July 2015. Units are ppm and the range 

was selected to highlight variability from 0 

to 0.5 ppm. 
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is an assumption needed in practice, but almost surely false. Since these diagnostics reference 

themselves, they are not as useful for estimating systematic errors—systematic errors are thus 

not reported here. Analyses against independent data (e.g., Section 3) serve as a better indicator 

of systematic error. 

 

Since the OCO-2 swath is just 10 km, we must bin soundings over a very wide spatial and 

temporal extent to have enough samples for the statistics of the Desroziers diagnostics to 

converge. We combine all soundings for a given month into 8 x 10 bins. Averages over these 

bins are used to estimate the daily error statistics. The bin size was selected based on 

experimentation to balance the need to resolve important geophysical features (higher resolution) 

with that of statistical convergence (lower resolution). For bins in which there are no soundings, 

we set the daily analysis error standard deviation to 1 ppm which is roughly consistent with the 

results in Weir et al. (2021a), Peiro et al. (2022), Zhang et al. (2022), and the evaluation in 

Section 3. We then interpolate the daily random error statistics onto the 0.5 x 0.625 analysis 

grid. For two examples, see Figure 3. The reported monthly random errors are simply the 

average of the daily random errors. This average produces a number that is quite small with the 

important note that for monthly statistics we expect the systematic error (i.e., bias) to play a 

greater role than the random error. 

 

Users should understand that during Arctic and Antarctic night, there is no observational 

coverage from OCO-2. Nevertheless, since GEOS can transport increments, it is possible for the 

assimilation to inform regions without sunlight. In the evaluation below, we see that assimilation 

improves GEOS comparisons to independent data near the South Pole even during its winter. For 

this reason, we do not currently provide a data indicator. Instead, if the user needs an indication 

of OCO-2 L2 sounding coverage, we suggest either consulting the L2 files or using the reported 

random errors of the OCO-2 GEOS L3 analysis to determine the precision of the “integrated” 

data constraint of all ingested products, not just OCO-2 L2 soundings, on XCO2 at a given place 

and time. 

3. Independent Data Evaluation 
Here we evaluate OCO-2 GEOS L3 XCO2 against Total Carbon Column Observing Network 

(TCCON; Wunch et al., 2011) and the analysis three-dimensional CO2 (Figure 2), from which 

XCO2 is computed, against NOAA ObsPack GlobalView+ v6.1 collection of in situ data 

(Schuldt et al., 2021). The ObsPack comparison focuses on surface data from the marine 

boundary layer and aircraft campaign data from NASA’s Atmospheric Tomography (ATom; 

Wofsy et al., 2018), Atmospheric Carbon and Transport–America (ACT-America; Davis et al., 

2021) and Arctic Carbon Atmospheric Profiles (Arctic-CAP; Sweeney et al., 2022) flights from 

the Arctic-Boreal Vulnerability Experiment (ABoVE; Miller et al., 2019), the National Science 

Foundation’s O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS; Stephens et al., 

2018), and Japan’s Comprehensive Observation Network for Trace Gases by Airliner 

(CONTRAIL; Machida et al., 2008). Figures showing the current status of this evaluation are 

given below. Updates and more comprehensive comparisons of GEOS products to these and 

other datasets are available on the GMAO Carbon fluid page https://fluid.nccs.nasa.gov/carbon/. 

 

 

https://fluid.nccs.nasa.gov/carbon/
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Figure 4. Evaluation against TCCON XCO2 observations (black dots) of the baseline GEOS 

LoFI simulation (blue dots) and the OCO-2 GEOS L3 analysis (red dots). Numbers in 

parentheses are the mean and root-mean-squared-difference (RMSD) of the observation - 

gridded product differences. The analysis shows clear improvement across sites, notably in 

RMSD. These comparisons are summarized for all TCCON sites and by season in Figure 5. 

 

 

Figure 5. Box and whisker plots of TCCON observation - simulation (blue) and observation - 

analysis (red) differences for all months (ALL), December, January, February (DJF), March, 

April, May (MAM), June, July, and August (JJA), and September, October, and November 
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(SON). Boxes span the 25th to 75th percentiles with the median indicated by a circled dot. On the 

vertical axis, sites are ordered by increasing latitude with the Tropics of Cancer and Capricorn 

indicated with dashed lines. See Figure 4 for more details about the simulation and analysis. The 

analysis shows small, yet consistent, improvements upon the simulation over all time periods 

with the most notable, and surprising, improvements over the Southern Hemisphere in austral 

winter (MAM and JJA). 

 

 

Figure 6. Same as for Figure 5, but for NOAA marine boundary layer measurements. As in the 

column, in the surface comparison shows the analysis shows small, yet consistent, improvements 

upon the simulation over all time periods with the most notable, and surprising, improvements 

over the Southern Hemisphere in austral winter (MAM and JJA). 

 

 

Figure 7. Latitude by altitude cross-sections of ATom aircraft campaign comparisons. 

Campaigns are ordered seasonally from left to right: DJF (ATom 2, Winter 2017), MAM (ATom 

4, Spring 2018), JJA (ATom 1, Summer 2016), SON (ATom 3, Fall 2017). The top row shows 

observations - simulation values and the bottom shows observation - analysis values. As in 

Figure 4, numbers in parentheses indicate the mean and root-mean-squared-difference (RMSD). 

When available, CONTRAIL and ORCAS data for the same seasons are shown as well. The 
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analysis shows consistent improvements in three seasons (MAM, JJA, and SON) and comparable 

skill (DJF) in one season. 

 

 

Figure 8. Same as for Figure 7 for ACT-America and zoomed-in over North America. Again, 

the analysis shows consistent improvements in three seasons (MAM, JJA, and SON) and 

comparable skill (DJF) in one, when there is limited sunlight and far less OCO-2 data. 

 

 

Figure 9. Same as for Figure 7 for Arctic-CAP and zoomed-in over the Arctic. As in the 

previous figures, the analysis shows consistent improvements in MAM, JJA, and SON. 

4. File Naming Conventions 
The standard full name for OCO GEOS L3 products will follow the format described below: 

[satellite]_[data product]_[time resolution]_[date]_[build ID]Ar.nc4  

 

For all files, satellite = ‘oco2’ and data product = ‘GEOS_L3CO2’. Time resolution describes 

the frequency at which variables are written within the file and can be ‘month’ or ‘day’. Date 

defines the day or month contained in the file and has the form yyyymm for monthly files, and 

the form yyyymmdd for daily files. More details on filenames are given in the description of 
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available datasets below. Note that the OCO L2 products use a 2-digit year while we use a 4-

digit year identifier. 

5. Available Data 
Data are provided in netCDF format in the following collections:  

oco2_GEOS_L3CO2_day:  OCO-2 Level 3 Daily XCO2  

     Frequency: Daily, containing 1 daily value 

     Dimensions: longitude=576, latitude=361, time=1 

     Granule Size: ~3.2 MB 

     Short name: oco2_GEOS_L3CO2_day      

     Filename: oco2_GEOS_L3CO2_day_yyyymmdd_B10206Ar.nc4 where yyyymmdd reflects 

the 4-digit year, month, and day of the date whose contents are reported in the file. 

     doi: 10.5067/Y9M4NM9MPCGH 

 

Science Variables 

Name Dim Description Units 

XCO2 tyx CO2 Dry-Air Column Average (analysis) mol mol-1 

XCO2PREC tyx CO2 Dry-Air Column Average Precision mol mol-1 

 

oco2_GEOS_L3CO2_month:  OCO-2 Level 3 Monthly XCO2  

     Frequency: Monthly, containing 1 monthly value 

     Dimensions: longitude=576, latitude=361, time=1 

     Granule Size: ~3.2 MB 

     Short name: oco2_GEOS_L3CO2_month      

     Filename: oco2_GEOS_L3CO2_month_yyyymm_B10206Ar.nc4 where yyyymm reflects the 

4 digit year and month whose contents are reported in the file. 

     doi: 10.5067/BGFIODET3HZ8 

 

Science Variables 

Name Dim Description Units 

XCO2 tyx CO2 Dry-Air Column Average (analysis) mol mol-1 

XCO2PREC tyx CO2 Dry-Air Column Average Precision mol mol-1 

6. Contacts 
Lesley Ott (lesley.ott@nasa.gov) 

Brad Weir (brad.weir@nasa.gov) 
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